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Analysis of Wave Propagation in
Inhomogeneous Dielectric Slab Waveguides

HIROYOSHI IKUNO

Abstnzct-Tbe propagation characterhtica of the guided modes in an
hshomogeneous dielectric slab waveguide are analysed by tbe regufarfzed

WKBJ method. The corrected propagation constanta of the guided modes
in a near parabolic index medium are derived in analytic form. The effects

of the refractive index profife and the homogeneous cladd~ on the guided
modes can be expremed in terms of the mode indices and evaluated

numerically.

I. INTRODUCTION

A N IMPORTANT aspect of the guided modes in a

graded index multimode fiber involves the investiga-

tion of the propagation characteristics subjected to signal

distortion caused by group delay difference among the

guided modes. The Wentzel-Kramer-Brilloun (WKB)

method is useful for analyzing this problem [1], [2]. The

results are in good agreement with the exact solutions for

the higher order modes but poor for the lower order

modes in case of graded index fibers [3]. This method also

gives reliable results for the optical waveguides formed by

diffusion [4], [5], There, however, is a negative assertion

for the WKB method in which this method is neither

applicable to a single-mode fiber nor to those modes

which are close to cutoff [3], [6]. This mainly originates in

the fact that the WKB solutions for the propagation

constants of the lower order modes involve considerable

errors [3]. To overcome this difficulty, a sophisticated

method is proposed but it contains complex manifesta-

tions of the solutions [3]. Fortunately, we can find a

simple closed-form method for refining the WKB ap-

proximation, henceforth referred to as a “regularized

WKBJ method,” in [7]. This method gives precise propa-

gation constants asymptotically. The first-order term of

the asymptotic expansion in the regularized WKBJ

method is the WKBJ approximation with the corrected

solutions of the Bohr–Sommerfeld quantum conditions.

The purpose of this paper is to show the usefulness of

the regularized WKBJ method with application to the

wave propagation in inhomogeneous dielectric wave-

guides. We analyze an inhomogeneous slab waveguide

with a power law profile. The corrected propagation con-

stants are represented in analytic form. The effects of the

refractive index profile and the homogeneous cladding on

the guided modes are explicitly expressed through the

perturbed turning points or the propagation constants. As
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a result, this formulation may simplify the manifestation

of the solutions and accompany with the clearer interpre-

tation of the physical behaviors of the guided modes.

These results are confirmed more in numerical examples.

The time factor exp (– jot) is suppressed throu@out this

paper.

II. MODES ~ ~ UNCLADDED WAVEGUIDE

We consider the wave propagation in an inhomoge-

neous dielectric slab waveguide with a near parabolic

index profile

n(y) =no(l–x(y))1”2 x( Y)=(9’)2-~(a)4+- P(fy)6

(1)

where no is the refractive index at the center of the

waveguide, g is a positive constant, and a, /3 are constants

(see Fig. 1). We develop the formulation for the TE-wave

propagation along such a waveguide, since the TM wave

can be handled in the same way [3]. We now write the

mode function and the propagation constant in this wave-

guide as

Q.(Y) exp (j~nz) pn=k(l–bn)l/2, n=o, 1,2, ---

(2)

where k is the wavenumber at y = O. The transverse mode

function @n(y) obeys the differential equation

~:(y) + k2(bn ‘X( Y))@n(.Y) =0 (3)

where the double prime denotes the second-order deriva-

tive with respect toy.
To obtain the solutions of (3), we use the regularized

WKBJ method. First, let us describe the WKBJ solutions
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of (3). Under the WKBJ approximation, there exist the (@))’=~’(~_#))
eigenvalues b. such that

n

b. =b:l)+ 0(1/k2),
= k2– (2n + l)kgi- (3/8)ag2(2n + 1)2

n=o, l,2,. ,. (4)

where b~l) satisfies the Bohr–Sommerfeld quantum condi- +((17/64)a2–(5/ 16)~)g3(2n+ 1)3/k+ . . .

tions

{
+0

for the TE wave

~_Y(,J,}~ n X(-y))1’2@=(2n+ 1)T/2 ‘=0,12-~
k Y(@) b(l)_ ~gz–(2–3a)g3(2n +l)/k, for the TM wave.

(5) (10)

with From (7) and (10), we can obtain the corrected propaga-

bn ‘x(~(bn)), n=o, l,2,. . . . (6) tion constants

The points –y(b~) and y(b~) are called the turning points. (8.)2 =(8;1))2+ (3/8)ag2
The function b. – x(y) is linear in-y over a suitable region

near the turning point. Then the bounded WKBJ solution +((67/64)a2– (25/16) /3)g3(2n+ 1)/k

of (3) can be represented in terms of the Bessel function +0(1/k2), n=o, l,2,. . . . (11)
and the modified Bessel function of order t 1/3 [8].

Idext, let us derive the formula for determining the The corresponding turning points are

second-order terms of the eigenvalues. The result is as

follows (see Appendix) [7]: (~(bn))’= (y(b;l)))2- (3/8)(x/k2

bn = b;l) + b~2)/k2 + O (l/k’), n=o,l,2, ”””
-((19/64) a2- (25/16) j3) g2(yno)2/k2

[(

+ 0(1/k4), n=o, l,2,. .- . (12)

b$2)=(l/12) d2 ~“(b) ((dX(y)/@)2
‘y (b) The propagation constants (11) have been derived by the

1
sophisticated method in case of ~ = O [3]. For the refrac-

/(b- ~(y)) ’i2)@)/db2 tive index with a =2/3 and D= 17/45, the propagation

bcb;l) constants are

/~Y(@) (b$l)-x(y))-1/2& n=0,1,3.. . . (7) (l%)2=(k-(n+l/2) g)2
–y(bjlJ)

(

+ (1/4) gz, for the TE wave
From (7) together with (5) we can evaluate the corrected

propagation constants with the error of order 1/k3.
- (3/4) g’, for the TM wave. (13)

The WKBJ method gives the exact solutions of (3) at

the turning points and the asymptotic solutions with the From this we can conclude that the refractive index

error of order l/k elsewhere [7]. Thus we can well repre- profile with a= 2/3 and ~= 17/45 is not optimal in the

sent the guided modes in this waveguide in terms of the sense of the equalization of the group delay difference

first-order regularized WKBJ solutions, that is, the WKBJ among the guided modes, because of tl ‘j?./ M3k #O. It,

solutions with the corrected propagation constants. however, is noted that ~ 2~~])/i3nilk =0.

Last, let us calculate the propagation constants and the

turning points of the guided modes in the waveguide with

a near parabolic index profile (l). From (5), we can easily

obtain the turning points in the form

MW)))2=(J’no)’(1 + (5/ow2b’no)2

+((63/64)a2– (11/16) fl)g4(y~O)4+ . . )

{

o, for the TE wave
+

- (2-3a) g2(y~o)2/k2, for the TM wave ‘8)

where y~o denote the turning points of the square law

medium:

y~o= ((2n + 1)/kg)* /2, n=o, l,2,. .@ . (9)

Substituting (8) into (6), we have the propagation con-
stants

111. MODES IN A CLADDED WAVEGUIDE

In this section we describe the guided modes in a

graded index fiber with the homogeneous cladding. The
refractive index n(y) varies with the following form:

{

n(y),
n(y) = ~ona, Y~Ya

y >ya (14)

where na is a positive constant and ya is the core

boundary. For simplicity, we consider the case of the TE

wave. It is easily supposed that the propagation constants

of the guided modes in this waveguide may change their

forms from /J~ for the uncladded waveguide to &[9]:

&=k(l-bU)*/2 ? v=n+Au Y L?=O ,1,2,... (15)

with

4= (Y(h))> n=o, l,2,. . . . (16)
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Fig. 2. Effect of the refractive index profile on the field distributions of the guided modes: TE wave with the parameters
k=l,53xld/mm, g=3.23/rnm ------- a=p=o, — a=lOO, /?=O. (a)rz=O, (b) n=l, (c)n=2, (d) n=3.

TABLE I
VALUSS OF D (PERCENT): COMPARISON WITH REGULARIZED WKBJ SOLUTIONSAND WKBJ SOLVTIONS WITH RSSPECT TO THE

PROPAGATION CONSTANTS; k= 1.53x l@/mm, g = 3.23/mm

m
Then the electric field for the nth-guided mode can be
represented in the form using two independent solutions

o~, O; of (3) with v

[

(A@~(y) + B@~(y))exp(j&z), y < y.

EX (~,Z) = (~@:(ya) +-~@;(ya))

exp( – Q.(Y–Y.) +~/%z), y >ya

(17)

where A and B are constants, and

Q.= ((& )2- (kna)’)’”, Re(Qu)>O, Im(Qv)<O.

The symbols Re( ) and Im( ) denote the real part of
and the imaginary part of the quantity in parentheses. To

determine the unknown numbers Av, we use the boundary

condition at y = y.. The tangential component of the elec-

tric field is already matched. Therefore the tangential

component of the magnetic field Hi (y, z) must be

matched at y = ya. From this, and the symmetry property

of the problem, we can obtain the characteristic equations

Av= (2/~) tan-’ [(@~’(ya) + ~.~~(y.))

/(@?’(Y.)+ QJ%(Y.))] (18)
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Fig. 3. Field distributions of the guided modes in inhomogeneous waveguide with homogeneous claddiag: TE wave with
the parameters k= 1.53X l@/mm, g= 3.23/mm, Y. = 1.26 X 10-2/mm (n(ya) = 1.5287), a = ~ = O.— n~a = 1.5288,
------ nona=l.5260. (a)n=O, f, b)n=l, (c)n=2, (d) ~=3.

TABLE II
VALUES OF AVPFOR mm VARIOUS REFRACTIVE INDICES non= OF THE HOMOGSMEOUSCLADDING: TE WAW?

ARAMETERSk= 1.53X l@/mm, g= 3.23/mm, ya = 1.26 X 10–2/mm (n(y=) = 1.5287), a = /3=0.
WrTH ‘mm

where the prime denotes the derivative with respect toy. Thus the regularized WKBJ method describes the guided
The procedure for determining the guided modes is modes in the cladded slab waveguide as simple as those in

summarized as follows. the uncladded waveguide.

1) The perturbed numbers AU are numerically given as

the solutions of the transcendental equations (18).

2) Substituting these into (15) and (16) in which indices

n are replaced by v, we can calculate the propagation

constants & and the turning points y (bu).

3) From (17) we can calculate the field distributions of

the guided modes with the aid of the regularized WKBJ

solutions.

IV. NUMERICAL EXAMPLES AND DISCUSSION

In order to confirm the validity of the present method,

we provide several numerical examples.

First, let us consider the propagation constants of the

guided modes in a near parabolic index medium. To

evaluate the effect of the correction terms on the WKBJ

solutions for the propagation constants, we introduce the

quantity
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D=((3/8)ag2+((67/64) a2-(25/16) /3)g3(2n+ 1)/k)

/((&)2 -~2+(2~+0@x 100. (1%

Table I shows that the correction terms are more signifi-

cant to the lower order modes and the WKBJ solutions

are in good agreement with the regularized WKBJ solu-

tions for the higher order modes. In case of square law

medium, the first-order term of the asymptotic expansion

in the regularized WKBJ solution is equivalent to the

WKBJ solution. In this case the field distributions of the

guided modes calculated by the WKBJ method are com-

pared with the exact ones. The results show the relative

errors which in all cases are less than 1 percent, Therefore,

the regularized WKBJ method well represents the guided

modes in a near parabolic index medium, because this

method gives the precise propagation constants or the

turning points of the guided modes and the exact solu-

tions at the turning points.

Fig, 2 shows the effect of the fourth-order term of the
refractive index gradient on the field distributions. This

effect is more significant to the higher order modes, Equa-

tions (8), (9), and (12) also imply this feature. To compare

this effect with the cladding effect, we show Fig. 3. The

solid lines in Figs. 2 and 3 are corresponding to each other

physically. In fact, the turning points are shifted outwards

in both cases. As a result, the energy carried by the guided

modes tends to leak out. The effect of the outer layer on

the guided modes is also significant to the higher order

modes; this is also shown in Table II.

V. CONCLUSION

We solve the problems of the wave propagation in a

near parabolic index medium without or with the homoge-

neous cladding in terms of the regularized WKBJ method.

The corrected propagation constants are derived in

analytic form. The wave propagation in a graded index

slab waveguide may be well interpreted by considering the

fact that the position of the turning point shifts according

to the refractive index profile and the homogeneous clad-

ding. The regularized WKBJ method maybe applicable to

the wave propagation in a radially inhomogeneous optical

fiber.

VI. APPENDIX

We derive the formula (7) referring to [7]. Let W.(y) be

the function which satisfies the equation

Jm ~?l(Y)2@=l~:(Y) +k2(h-Y2)~n(Y)=o _m

(Al)

where A = (2n + 1)/k. Next, we construct the function

such as

Fn (y) =CfD(y)Wn (q(y))l (y) (A.2)

where +(y) is a function which takes zero outside ( –y (b)

– 28,y(b) + 28) and unity inside [ –y(b) – ~,y(b) + 8],

and q(y) satisfies the equation

265

V’(Y) =((W-x(Y))/(Pn -W*))’” (A.3)

and

( (Y) =(V’(Y))-*”. (A,4)

From (A.3) and (5), we have

?l(Y(bjl))) =(l%)l’2, n=o, 1,2, ””” . (A..5)

Moreover, if x(y) is m-times continuously differentiable at

y = ty(bjll) and x’( &y(bjl))#O, then the function q(y)

is also m-times continuously differentiable at those pOdS.

Now the function F.(y) satisfies the equation

F: (y)+ k2(b;1)–X(Y))Fn (Y) – ({”/{ )Fn (Y)

= -@’’{wn +2[C$’({wn)]’, n=o, 1,2, ”.. . (A.6)

In the subdomain of b~l) < x(y), ~’ and +“ take nonzero

values and Wn (y) is the order of exp ( – Hi ). Therefore,

the right hand side of (A.6) is the order of exp ( – kti).

Multiplying (A.6) by O. (y) in (3) and integrating by parts,

we have

k2(W;’))~,_28‘2+26@n(y)Fn(y)dy

=-~y2+2’({/()@~(y)~~(Y)@+O(exp(-k6)) (A7)
yl–’c$

where we use the abbreviations as y 1= – y (bj])) and y2 =

y (b~ll). Next, let us evaluate the integrals in (A.7). To do

this” we utilize the asymptotic formula such that

(1@n(y)=~ ‘*/2COS k ‘Pc& – T/4
Y’ )

(]) – X(y))1i2. If cD.(Y) is normalizedwhere P= (bn

as Wn (y), then we can obtain the evaluation

(AL.8)

as well

Jy2-’@n(Y)2@=(2/~)Jy2-o(l/p)
,1+8 yl+s

(J. sin2 k
)

‘P4+T/4 @
Y’

=1+0(8) (#L)9)

where

T= J(/‘2 1 P;
Y’

The similar evaluation can be

Therefore, we have

4.

established for Fn (y).

/

y2–~

k2(bn – b;])) = –
(J

(~ ’’/JP)sin2 k
)

‘Pt$+7r/4 C@

,1+8 Y’

/

1

‘2-6( 1/P) sin2(k~dy+~/4)dy

yl+ls

+O(exp(–ktl))+ O(~)

=-(1/T) ~:’ ({ ’’/@) @+ 0(expk8))+O( ,8)8).

(A. 10)./
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From (A.3) and (A.4) we have the identity also wishes to thank Prof. Hashimoto of Osaka Electro-

Communication University for his helpful suswestions.

((’’/{P)= -(1/12) [d’((x’)’/@-x(y)) ’/2dbdj’j
bcb;l~

+(1/4)d(x’/p3)/@ [1]

- (1/2)?f( pn - q’)-3’2-(5/4)q’q’( pn - ?j’)-’/z. ~21

Using this identity, we can easily obtain the relation [3]

fl:’((’’/@)@( 1(12)2)
[4]

(A-l1, [fj]

From (A. 10) and (A. 11), and the limiting process k+co

and 8~0, we have the formula (7).
[7]
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The Electromagnetic Fields and the Phase
Constants of Dielectric Image Lines

KLAUS SOLBACH M INGO WOLFF

Abstract—A method is &acribed for the exact cafcnfatfon of the field

distributions and the phase constants of single and coupled dielectric image

fries of rectangdar cross section. Field d~tributions aad pfrase constants

cafcotated by this method are presented as weff as expxfmentaf results

from lines fabricated of paraf~m wax. The physicaf properties of the

electromagnetic fields and tke mode designation are discussed. The theory

is compared to approximate calculation methods known from the litera-

ture.

1. INTRODUCTION

D IELECTRIC IMAGE LINES are used as a basis of

integrated millimeter-wave circuits; it is hoped that

they will solve the problems which are known in connec-

tion with the application of microstrip lines in the millime-

ter-wave range. Therefore, more attention has been paid

to this kind of microwave guide in the last five years by

several authors; furthermore, the dielectric waveguide has

been proposed for application in the optical range. Papers

Manuscript received January 3, 1977; revised June 10, 1977. This work
was supported by the German Research Society under contract Wo
137/2.

The authors are with the Department of Electrical Engineering, Uni-
versity of Duisburg, Duisburg, Germany.

by Goell [1] and Marcatili [2], which are based on in-

vestigations by Schlosser and Unger [3], shall be men-

tioned here. Goell and Marcatili have examined rectangu-

lar dielectric waveguides embedded in a second dielectric

material; Goell calculated the waveguides by expanding

the fields into cylindrical eigensolutions, whereas

Marcatili described an approximate solution which was

found to neglect the electromagnetic fields of certain field

regions. Toulios and Knox [4] in 1970 applied the solu-

tions of Marcatili to the problem of the dielectric image

line and showed the possible applications of the line for

millimeter wave techniques. Goell [1] only gave the solu-

tion of the field problem of one single line; Marcatili

described an approximate solution for two coupled lines,

which in a similar way has been used by Toulios and

Knox. A paper by Levige, Itoh, and Mittra [5] was also

based on Marcatili’s fundamental approximation method.

In this paper an exact solution is presented for the

calculation of the phase constant and the field distribu-

tions of one single or two coupled dielectric image lines of

rectangular cross section. The method presented can be

001 8-9480/78/0400-0266$00.75 01978 IEEE


