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Analysis of Wave Propagation in
Inhomogeneous Dielectric Slab Waveguides

HIROYOSHI IKUNO

Abstract—The propagation characteristics of the guided modes in an
inhomogeneous dielectric slab waveguide are analyzed by the regularized
WKBJ method. The corrected propagation constants of the guided modes
in a near parabolic index medium are derived in analytic form. The effects
of the refractive index profile and the homogeneous cladding on the guided
modes can be expressed in terms of the mode indices and evaluated
numerically.

I. INTRODUCTION

N IMPORTANT aspect of the guided modes in a
graded index multimode fiber involves the investiga-
tion of the propagation characteristics subjected to signal
distortion caused by group delay difference among the
guided modes. The Wentzel-Kramer-Brilloun (WKB)
method is useful for analyzing this problem [1], [2]. The
results are in good agreement with the exact solutions for
the higher order modes but poor for the lower order
modes in case of graded index fibers [3]. This method also
gives reliable results for the optical waveguides formed by
diffusion [4], [5]. There, however, is a negative assertion
for the WKB method in which this method is neither
applicable to a single-mode fiber nor to those modes
which are close to cutoff [3], [6]. This mainly originates in
the fact that the WKB solutions for the propagation
constants of the lower order modes involve considerable
errors [3]. To overcome this difficulty, a sophisticated
method is proposed but it contains complex manifesta-
tions of the solutions [3]. Fortunately, we can find a
simple closed-form method for refining the WKB ap-
proximation, henceforth referred to as a “regularized
WKBJ method,” in [7]. This method gives precise propa-
gation constants asymptotically. The first-order term of
the asymptotic expansion in the regularized WKBJ
method is the WKBJ approximation with the corrected
solutions of the Bohr-Sommerfeld quantum conditions.
The purpose of this paper is to show the usefulness of
the regularized WKBJ method with application to the
wave propagation in inhomogeneous dielectric wave-
guides. We analyze an inhomogeneous slab waveguide
with a power law profile. The corrected propagation con-
stants are represented in analytic form. The effects of the
refractive index profile and the homogeneous cladding on
the guided modes are explicitly expressed through the
perturbed turning points or the propagation constants. As
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Fig. 1. The refractive index profile. ------ unperturbed, —-—

perturbed.

a result, this formulation may simplify the manifestation
of the solutions and accompany with the clearer interpre-
tation of the physical behaviors of the guided modes.
These results are confirmed more in numerical examples.
The time factor exp (—jwt) is suppressed throughout this

paper.
II. MODES IN AN UNCLADDED WAVEGUIDE

We consider the wave propagation in an inhomoge-
neous dielectric slab waveguide with a near parabolic
index profile

n(M)=n(1-x(»)"*  x(»)=(2)*—a()*+B(&)°

(1)
where n, is the refractive index at the center of the
waveguide, g is a positive constant, and «, 8 are constants
(see Fig. 1). We develop the formulation for the TE-wave
propagation along such a waveguide, since the TM wave
can be handled in the same way [3]. We now write the
mode function and the propagation constant in this wave-
guide as

®,(y)exp(jB.z)

Bn=k(1—bn)l/27 n=0,1,2,""

@

where k is the wavenumber at y =0. The transverse mode
function ®,(y) obeys the differential equation

@, (»)+k* (b, —x(»))®,(»)=0 3)
where the double prime denotes the second-order deriva-
tive with respect to y.

To obtain the solutions of (3), we use the regularized
WKBJ method. First, let us describe the WKBJ solutions
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of (3). Under the WKBJ approximation, there exist the
eigenvalues b, such that

b,=b"+0(1/k?), n=0,1,2,--- 4)

where b{" satisfies the Bohr—-Sommerfeld quantum condi-
tions

k [Y0) (b0 —x () dp=Q@n+ )7 /2, n=0,1,2,-- -
e (5)

with
bn =X(y (bn))7 n=0,1,2,--- . (6)

The points —y(b,) and y(b,) are called the turning points.
The function b, — x(y) is linear in y over a suitable region
near the turning point. Then the bounded WKBJ solution
of (3) can be represented in terms of the Bessel function
and the modified Bessel function of order +1/3 [8].

Next, let us derive the formula for determining the
second-order terms of the eigenvalues. The result is as
follows (see Appendix) [7]:

b= b +5@ 12+ 0 (1/k%),

b£2>=(1/12)[d2( 2o (@x»)/ &

n=0,12, -

/(b—x<y>)‘/2)ay)/db2]

b=

/ ¥ (&) (6D —x(»)) "y,
—y(B5")
From (7) together with (5) we can evaluate the corrected
propagation constants with the error of order 1/k°.

The WKBJ method gives the exact solutions of (3) at
the turning points and the asymptotic solutions with the
error of order 1/k elsewhere [7]. Thus we can well repre-
sent the guided modes in this waveguide in terms of the
first-order regularized WKBJ solutions, that is, the WKBJ
solutions with the corrected propagation constants.

Last, let us calculate the propagation constants and the
turning points of the guided modes in the waveguide with
a near parabolic index profile (1). From (5), we can easily
obtain the turning points in the form

(.y(br(ll)))2 = (yn0)2(l + (5/8)ag2(yno)2
+((63/64)0> = (11/16) B) g*(y,0)*+ - - )

n=0,1,2,--- . (7)

+ 0, for the TE wave ®)
—(2-30) g% (3,0)*/ K%,

where y,, denote the turning points of the square law
medium :

yo=(@n+1)/kg)"%,  n=0,12---. (9

Substituting (8) into (6), we have the propagation con-
stants

for the TM wave
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(BOY =k2(1-b(D)
=k>—(2n+1)kg+(3/8)ag*(2n+1)*
+((17/64)a*—(5/16) B) &> 2n+ 1)’ /k+ - - -

+ 0, for the TE wave
—g>—(2-3a)g’(2n+1)/k,  for the TM wave.

(10)
From (7) and (10), we can obtain the corrected propaga-
tion constants

(B, =(BP)+(3/8)ag?
+((67/64)a>—(25/16) B) g*(2n+1)/k

+0(1/k%, n=0,1,2,--- . (11
The corresponding turning points are
(7 (8= (¥ (6")) - (3/8)a/ k>
—((19/64)a>~(25/16) B) 8*(,0)’ / K*
+0(1/k%, n=0,1,2,---. (12)

The propagation constants (11) have been derived by the
sophisticated method in case of =0 [3]. For the refrac-
tive index with a=2/3 and f=17/45, the propagation
constants are

(B,)=(k—(n+1/2)g)

N { (1/98"
-G/4 8"

for the TE wave

for the TM wave. (13)
From this we can conclude that the refractive index
profile with a=2/3 and B=17/45 is not optimal in the
sense of the equalization of the group delay difference
among the guided modes, because of 328,/9ndk0. It,
however, is noted that 328" /dndk =0.

I1I. MODES IN A CLADDED WAVEGUIDE

In this section we describe the guided modes in a
graded index fiber with the homogeneous cladding. The
refractive index n(y) varies with the following form:

n(y)={n(y),

Roltg,

YLy,

Y>Va (14)

where n, is a positive constant and y, is the core
boundary. For simplicity, we consider the case of the TE
wave. It is easily supposed that the propagation constants
of the guided modes in this waveguide may change their
forms from B, for the uncladded waveguide to B,[9]:

B,=k(1-5,)"? n=0,1,2, -
with

v=n+Av,

(15)

b,=(y(8,)), n=0,1,2,---.

(16)
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Fig. 2. Effect of the refractive index profile on the field distributions of the guided modes: TE wave with the parameters
k=1.53x10*/mm, g=3.23 /mm.------ a=f=0, a=100, 8=0. (a) n=0, (b) n=1, (c) n=2, (d) n=3.
TABLE I

VALUES OF D (PERCENT): COMPARISON WITH REGULARIZED WKBJ SoLUTIONS AND WKBJ SOLUTIONS WITH RESPECT TO THE
PROPAGATION CONSTANTS; k=1.53 X 10° /mm, g=3.23/mm

o=f B=% |a=100 8=4000
TE [ TM [ TE [ TM
500 150.0 |50-4 | 51.0
160 |10.4 | 104
38 | 45 | 41 | 41
20 [ 22 22 | 22

WIN[=[O| 3
<}
o

Then the electric field for the nth-guided mode can be The symbols Re( ) and Im( ) denote the real part of
represented in the form using two independent solutions and the imaginary part of the quantity in parentheses. To
®! @2 of (3) with v determine the unknown numbers Av, we use the boundary

A® (V) + B®? i8.2), < cqndition aty =y, The tangential component of the el‘e.c-
(49.(») s()exp (j8.,2) ISV tric field is already matched. Therefore the tangential

E (y,2)= (A D, () + B‘I’%(ya)) component of the magnetic field H,(y,z) must be
_ —3.)+jB,2), matched at y=y,. From this, and the symmetry property
(= 0.0y =3 +/8.2) Y >Ya (17) of the problem, we can obtain the characteristic equations
- - / 1
where A and B are constants, and Av=(2/7)tan 1[(‘1’}) (o) + Q.21 (1.))

0,=((8,)~(kn)'’,  Re(Q,)>0, Im(Q,)<0. /(@ () + 0,82 (r))] (19)
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Fig. 3. Field distributions of the guided modes in inhomogeneous waveguide with homogeneous cladding: TE wave with

the parameters k=1.53X10*/mm, g=3.23/mm, y,=1.26X10~%/mm (n(y,)=1.5287), a=B=0.— ngn, = 1.5288,
- ===~ - nyn,=1.5260. (a) n=0, (b) n=1, (c) n=2, (d) n=3.

TABLE II
VALUES OF Av FOR THE VARIOUS REFRACTIVE INDICES ngn, OF THE HOMOGENEOUS CLADDING: TE WAVE WITH THE
PARAMETERS k= 1.53x 10°/mm, g =323 /mm, y,=1.26 X 10~2/mm (n(y,)=1.5287), a= §=0.

1.5260 1.5288 1.5290

0 [032x10°] 0-655x10%] 0132x1073
1 |-0.499x1072| 0.127 x102] 0-306x10°2
2 |-0.326x10" | 0432 x¥07 | 0.314x107!
3 0421 0128 0139+0319

where the prime denotes the derivative with respect to y.
The procedure for determining the guided modes is
summarized as follows,

1) The perturbed numbers Av are numerically given as
the solutions of the transcendental equations (18).

2) Substituting these into (15) and (16) in which indices
n are replaced by v, we can calculate the propagation
constants 8, and the turning points y(b,).

3) From (17) we can calculate the field distributions of

the guided modes with the aid of the regularized WKBJ
solutions.

Thus the regularized WKBJ method describes the guided
modes in the cladded slab waveguide as simple as those in
the uncladded waveguide.

IV. NuUMERICAL EXAMPLES AND DISCUSSION

In order to confirm the validity of the present method,
we provide several numerical examples.

First, let us consider the propagation constants of the
guided modes in a near parabolic index medium. To
evaluate the effect of the correction terms on the WKBJ

solutions for the propagation constants, we introduce the
quantity
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D=((3/8)ag?+((67/64)a*—(25/16) B) g*(2n+1)/k)
/((B, Y — K>+ (2n+1)kg)x 100. (19)

Table I shows that the correction terms are more signifi-
cant to the lower order modes and the WKBJ solutions
are in good agreement with the regularized WKBJ solu-
tions for the higher order modes. In case of square law
medium, the first-order term of the asymptotic expansion
in the regularized WKBJ solution is equivalent to the
WKBJ solution. In this case the field distributions of the
guided modes calculated by the WKBJ method are com-
pared with the exact ones. The results show the relative
errors which in all cases are less than 1 percent. Therefore,
the regularized WKBJ method well represents the guided
modes in a near parabolic index medium, because this
method gives the precise propagation constants or the
turning points of the guided modes and the exact solu-
tions at the turning points.

Fig. 2 shows the effect of the fourth-order term of the
refractive index gradient on the field distributions. This
effect is more significant to the higher order modes, Equa-
tions (8), (9), and (12) also imply this feature. To compare
this effect with the cladding effect, we show Fig. 3. The
solid lines in Figs. 2 and 3 are corresponding to cach other
physically. In fact, the turning points are shifted outwards
in both cases. As a result, the energy carried by the guided
modes tends to leak out. The effect of the outer layer on
the guided modes is also significant to the higher order
modes; this is also shown in Table II.

V. CONCLUSION

We solve the problems of the wave propagation in a
near parabolic index medium without or with the homoge-
neous cladding in terms of the regularized WKBJ method.
The corrected propagation constants are derived in
analytic form. The wave propagation in a graded index
slab waveguide may be well interpreted by considering the
fact that the position of the turning point shifts according
to the refractive index profile and the homogeneous clad-
ding. The regularized WKBJ method may be applicable to
the wave propagation in a radially inhomogeneous optical
fiber.

VL.

We derive the formula (7) referring to [7}. Let W, (») be
the function which satisfies the equation

Wy )+ (W ()=0 [~ W, d=1

(A1)
where p,=(2n+1)/k. Next, we construct the function
such as

APPENDIX

F,(»)=¢(»)W,(n(»)(») (A2)
where ¢(y) is a function which takes zero outside (—y(b)
—28,y(b)+28) and unity inside [—y(b)—8,y(b)+ 8],
and n(y) satisfies the equation

265

7 () =((5" X/ (=) (A3)
and
=)™ (A4)
From (A.3) and (5), we have
a(y(ED)=(u)"  n=0,12---. (AS)

Moreover, if x(») is m-times continuously differentiable at

y=zy(") and x'(£y(b{")5£0, then the function n(y)

is also m-times continuously differentiable at those points.
Now the function F,(y) satisfies the equation

E () + k(5" =x(D)F, ()= (" /$F, ()
= —¢"sW,+2[¢'(¢W,)],  n=0,12-- . (A6)

In the subdomain of bV <x(y), ¢’ and ¢” take nonzero
values and W,(y) is the order of exp(— ké8). Therefore,
the right hand side of (A.6) is the order of exp(— k6).
Multiplying (A.6) by ®,(y) in (3) and integrating by parts,
we have

2426
2(b — b [ % (WVF ()
(b6 [ R (N
yi+28,
- _fl 26 (" /)2, (»)F,(y)dy+ O (exp(—Kk8)) (A7)
ylo
where we use the abbreviations as y'= —y(b{V) and y*=

y(bY). Next, let us evaluate the integrals in (A.7). To do
this we utilize the asymptotic formula such that

<1>n(y)=P-1/2cos(kffpdy—w/4)
Y

where P= (b —x(»))"/2. If ®,(y) is normalized as well
as W,(»), then we can obtain the evaluation

[ e, ra=/) [/ p)
+8 y

»! +8

(A.8)

-sinz(kf;de+7r/4)dy

=1+0(5) (A9)

where

The similar evaluation can be established for F,(y).
Therefore, we have

y:~8
kz(bn - b,(ll)) = — f (f”/{P)sinz(k
y

J:Paj/+77/4)dy
148 Y
y2—8
/f (l/P)sinz(kfdey+w/4)dy
y'+8 yl
+ O (exp(—k8))+ 0 (5)

= (/D) [ /5P)dr+ O (exp (—k8) +O(3).
(A.10)
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From (A.3) and (A.4) we have the identity
(§"/8P)=—(1/12)[ () / (b=x(»)"")/ab* |

+(1/4)d(x /P°)/ &y
— (/20 (=) "= (5 /42 (p,—0?) "2

=p"

Using this identity, we can easily obtain the relation

[ epyd=—1/1)

yl

+0(9).

b=b

dZ( f yz“’)“s((x'f/(b—x(y))‘/z)dy)/dbz

I(b)+8

(A.11)

From (A.10) and (A.11), and the limiting process k—co
and §—0, we have the formula (7).
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The Electromagnetic Fields and the Phase
Constants of Dielectric Image Lines

KLAUS SOLBACH anp INGO WOLFF

Abstract—A method is described for the exact calculation of the field
distributions and the phase constants of single and coupled dielectric image
lines of rectangular cross section. Field distributions and phase constants
calculated by this method are presented as well as experimental results
from lines fabricated of paraffin wax. The physical properties of the
electromagnetic fields and the mode designation are discussed. The theory
is compared to approximate calculation methods known from the litera-
ture.

I. INTRODUCTION

IELECTRIC IMAGE LINES are used as a basis of

integrated millimeter-wave circuits; it is hoped that
they will solve the problems which are known in connec-
tion with the application of microstrip lines in the millime-
ter-wave range. Therefore, more attention has been paid
to this kind of microwave guide in the last five years by
several authors; furthermore, the dielectric waveguide has
been proposed for application in the optical range. Papers
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by Goell [1] and Marcatili [2], which are based on in-
vestigations by Schlosser and Unger [3], shall be men-
tioned here. Goell and Marcatili have examined rectangu-
lar dielectric waveguides embedded in a second dielectric
material; Goell calculated the waveguides by expanding
the fields into cylindrical eigensolutions, whereas
Marcatili described an approximate solution which was
found to neglect the electromagnetic fields of certain field
regions. Toulios and Knox [4] in 1970 applied the solu-
tions of Marcatili to the problem of the dielectric image
line and showed the possible applications of the line for
millimeter wave techniques. Goell [1] only gave the solu-
tion of the field problem of one single line; Marcatili
described an approximate solution for two coupled lines,
which in a similar way has been used by Toulios and
Knox. A paper by Levige, Itoh, and Mittra [5] was also
based on Marcatili’s fundamental approximation method.

In this paper an exact solution is presented for the
calculation of the phase constant and the field distribu-
tions of one single or two coupled dielectric image lines of
rectangular cross section. The method presented can be
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